初一上册数学教案7篇

时间:2024-03-01 12:03:09 分类:教师心得体会

教案的详细准备可以让我们充分利用教学资源,丰富课堂的教学内容和形式,教案的准备过程可以促使我们思考教学目标和教学策略,确保教学的针对性和灵活性,心得范文网小编今天就为您带来了初一上册数学教案7篇,相信一定会对你有所帮助。

初一上册数学教案7篇

初一上册数学教案篇1

【学习目标】

1.掌握有理数的混合运算法则,并能熟练地进行有理数的加、减、乘、除、乘方的混合运算;

2.通过计算过程的反思,获得解决问题的经验,体会在解决问题的过程中与他人合作的重要性;

【学习方法】

自主探究与合作交流相结合。

【学习重难点】

重点:能熟练地按照有理数的运算顺序进行混合运算

难点:在正确运算的基础上,适当地应用运算律简化运算

【学习过程】

模块一预习反馈

一、学习准备

1.四则(加减乘除)混合运算的顺序:先算_______,再算_______,如有括号,就先算__________.同级运算按照从___往___的顺序依次计算。

2.有理数的运算定律:__________________________________________________.

3.请同学们阅读教材p65—p66,预习过程中请注意:⑴不懂的'地方要用红笔标记符号;⑵完成你力所能及的习题和课后作业。

《2.11有理数的混合运算》课后作业

9.用符号“>”“

42+32________2×4×3;

(-3)2+12________2×ok3w_ads("s002");

《2.11有理数的混合运算》同步练习

5、小亮的爸爸在一家合资企业工作,月工资2500元,按规定:其中800元是免税的,其余部分要缴纳个人所得税,应纳税部分又要分为两部分,并按不同税率纳税,即不超过500元的部分按5%的税率;超过500元不超过20xx元的部分则按10%的税率,你能算出小亮的爸爸每月要缴纳个人所得税多少元?

初一上册数学教案篇2

教学目标:

知识与技能

1.掌握直角三角形的判别条件,并能进行简单应用;

2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.

3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.

情感态度与价值观

敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.

教学重点

运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.

教学难点

会辨析哪些问题应用哪个结论.

课前准备

标有单位长度的细绳、三角板、量角器、题篇

教学过程:

复习引入:

请学生复述勾股定理;使用勾股定理的前提条件是什么?

已知△abc的两边ab=5,ac=12,则bc=13对吗?

创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.

这样做得到的是一个直角三角形吗?

提出课题:能得到直角三角形吗

讲授新课:

⒈如何来判断?(用直角三角板检验)

这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?

就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)

⒉继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:

5,12,13;6,8,10;8,15,17.

(1)这三组数都满足a2+b2=c2吗?

(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?

⒊直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

满足a2+b2=c2的三个正整数,称为勾股数.

⒋例1一个零件的形状如左图所示,按规定这个零件中∠a和∠dbc都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?

随堂练习:

⒈下列几组数能否作为直角三角形的三边长?说说你的理由.

⑴9,12,15;⑵15,36,39;

⑶12,35,36;⑷12,18,22.

⒉已知?abc中bc=41,ac=40,ab=9,则此三角形为_______三角形,______是角.

⒊四边形abcd中已知ab=3,bc=4,cd=12,da=13,且∠abc=900,求这个四边形的面积.

⒋习题1.3

课堂小结:

⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.

初一上册数学教案篇3

教学目标

1、使学生正确理解数轴的意义,掌握数轴的三要素;

2、使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3、使学生初步理解数形结合的思想方法。

教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。

难点:正确理解有理数与数轴上点的对应关系。

课堂教学过程设计

一、从学生原有认知结构提出问题

1、小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2、用“射线”能不能表示有理数?为什么?

3、你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴。

二、讲授新课

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度。在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃。

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):

1、画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2、规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3、选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,……从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,……

四、小结

指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。

本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。

初一上册数学教案篇4

?教学目的〗

?知识与技能目标:〗理解有理数减法的意义。

?过程与方法:〗会进行有理数减法运算

?情感态度与价值观:〗

有意识培养学生学习数学的信心和克服困难的勇气,从中体味成功的快乐。

?教学重点、难点:〗重点:异号两数相减。难点:异号两数相减。

?教学方法:〗引导发现法

?教具准备:〗尺、小黑板。

?教学过程:〗

Ⅰ。复习提问:

1、叙述有理数加法法则。

2、两个有理数的和一定大于每一个加数吗?

3.10比3大多少?10比-3大多少?-10比3大多少?如何计算?

4.3-10有意义吗?它应当等于多少?

注:问2是要向学生强调,两数的和不一定大于每一个加数,一个数加一个非零的有理数,其和可能增加也可能减少。问3是向学生说明求一个数比另一个数大多少在有理数范围内同样要用减法运算。问2和问3都是为了引入新课而设计的。

Ⅱ。新课讲解:

1、由问2、问3讲解有理数减法的意义。

在正有理数范围内3-10是没有意义的,因为3比10小,问3比10大多少,问题的本身就有问题,但引入负数就不同了。如果你有3元钱向售货员买了10元的物品,如果售货员让你先把物品拿走,那么你将欠售货员7元。这件事实如用算式表达,即3-10=-7。

由实际运算的例子归纳有理微减法法则。

考察:3-10=3+(-10)=-7,3-(-10)=3+10=13,

(-10)-(-3)=-10+3=-7,(-10)-7=-10+(-7)=-17。

等式左边的运算结果,用减法意义求出。3比10大-7,3比-10大13,-10比-3大-7,-10比7大-17,或画数轴,让学生观察得出。考察以上计算后。提问:减法是否都可转化为加法计算?启发学生自己得出有理数减法法则:减去一个数等于加上这个数的相反数。

3、讲解例题:

(l)补充例题:问15℃比5℃高多少度?15℃比-5℃呢?-5℃比15℃呢?

解:∵15-5=10,∴15℃比5℃高10℃;

∵15-(-5)-15+5=20,∴15℃比-5℃高20℃;

∵-5-15=-5+(-15)=-20,∴-5℃比15℃高-20℃。即-5℃

比15℃低20℃。

(2)教科书例1、例2。

Ⅲ。做一做

课堂练习:教科书第82页练习第1~3题。

Ⅳ。课时小结

有理数减法的意义。

Ⅴ。课后作业

1、习题2.6a组第1~9题,b组选做。

《2.5有理数的减法》同步练习

2、(题型一)李明的练习册上有这样一道题:计算|(-3)+_|,其中“_”是被墨水污染而看不到的一个数,他翻看了后边的答案得知该题的计算结果为6,那么“_”表示的数应该是。

3、(考点一)计算:(1)-2- (+10);

(2)0-(-3.6);

(3)(-30)-(-6)-(+6)-(-15);

《2.5有理数的减法》测试

16、下表记录了七年级(1)班一个组学生的体重与标准体重的差(正号表示比标准体重重,负号表示比标准体重轻),标准体重是50 kg.

姓名小明小丁小丽小文小天小乐

体重与标准体重的差(kg)-5+3-7+4+60

(1)谁最重?谁最轻?

(2)最重的比最轻的重多少千克?

以上内容就是一秘范文为您提供的7篇《初一的数学上册教案》,希望对您的写作有所帮助。

初一上册数学教案篇5

教学目标:

知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。

情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。

教学重点:掌握有理数的两种分类方法

教学难点:给定的数字将被填入它所属的集合中

教学方法:问题导向法

学习方法:自主探究法

一、形势归纳

小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?

1.有以下数字:15,9,-5,2/15,8,0.1,-5.22,-80,0,123,2.33

(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?

(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?

称整数和分数为有理数。(指点题,板书)

二、自学指导

学生自学课本,根据课本寻找自学的机会

提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

附:自学提纲:

1.___________、____、_______统称为整数,

2._______和_________统称为分数

3.____ ______统称为有理数,

4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、2中,整数: 、分数:;正整数:、负整数: 、正分数: 、负分数:.

三、展示归纳

1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

四、变式练习

逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.

2.判断下列说法是否正确,并说明理由。

(1)有理数包括有整数和分数.

(2)0.3不是有理数.

(3)0不是有理数.

(4)一个有理数不是正数就是负数.

(5)一个有理数不是整数就是分数

3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):

杨桂花:1.2.1有理数教学设计

正数集合:{ …}负数集合:{ …}

正整数集合:{ …}负分数集合:{ …}

4.下列说法正确的是( )

a.0是最小的正整数

b.0是最小的有理数

c.0既不是整数也不是分数

d. 0既不是正数也不是负数

5、下列说法正确的有( )

(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数

五、总结与反思:通过本节课的学习,你有什么收获?

六、作业:必做题:课本14页:1、9题

初一上册数学教案篇6

【教学目标】

知识与技能

理解合并同类项的法则,会用合并同类项法则解一元一次方程,并在此基础上探索一元一次方程的一般解法。

过程与方法

通过探索合并同类项法则的过程培养学生观察、思考、归纳的能力,积累数学探究活动的经验。

情感、态度与价值观

通过探索合并同类项法则并进一步探索一元一次方程一般解法的过程,感受数学活动的创造性,激发学生学习数学的兴趣。

【教学重难点】

重点:合并同类项法则的探索及应用。

难点:合并同类项法则的理解和灵活运用。

【教学过程】

一、温故知新

师:你们知道等式的基本性质是什么吗?

学生回答,教师点评。

师:利用等式的基本性质解方程:

(1)2x+3=x+4;(2)5x+4=5-3x.

学生解答,然后集体订正。

问题展示:

问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?

师:设前年购买计算机x台,那么去年购买计算机多少台?

生:2x台。

师:今年购买计算机多少台?

生:4x台。

师:题目中的等量关系是什么?

师生共同分析,列出方程:x+2x+4x=140.

用框图表示出解这个方程的具体过程:

x+2x+4x=140

合并同类项

7x=140

系数化为1

x=20

二、例题讲解

解下列方程:

(1)2x-x=6-8;

(2)7x-2.5x+3x-1.5x=-15×4-6×3.

解:(1)合并同类项,得-x=-2,

系数化为1,得x=4.

(2)合并同类项,得6x=-78,

系数化为1,得x=-13.

三、巩固练习

解下列方程:

1.3x+4x-2x=18-7.

2.y-y+y=×6-1.

四、课堂小结

师:这节课你学习了哪些知识?获得了哪些经验?

学生发言,教师予以补充。

初一上册数学教案篇7

《1.2有理数》教学设计

?学习目标】:

1、掌握有理数的 概念,会对有理数按一定标准进行分类,培养分类能力;

2、了解分类的标准 与集合的含义;

3、体验分类是数学上常用的处理问题方法;

?学习重点】:正确理解有理数的概念

?学习难点】:正确理解分类的标准和按照一定标准分类

《1.2.1有理数》同步练习含答案

5.对-3.14,下面说法正确的是(b)

a.是负数,不是分数

b.是负数,也是分数

c.是分数,不是有理数

d.不是分数,是有理数

《1.2有理数》同步练习含答案解析

8.如果a与1互为相反数,则|a|=( )

a.2 b.﹣2 c.1 d.﹣1

?考点】绝对值;相反数.

?分析】根据互为相反数的定义,知a=﹣1,从而求解.

互为相反数的定义:只有符号不同的两个数叫互为相反数.

?解答】解:根据a与1互为相反数,得

a=﹣1.

所以|a|=1.

故选c.

?点评】此题主要是考查了相反数的概念和绝对值的性质.

9.若|1﹣a|=a﹣1,则a的取值范围是( )

a.a>1 b.a≥1 c.a

?考点】绝对值.

?分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.

?解答】解:∵|1﹣a|=a﹣1,

∴1﹣a≤0,

∴a≥1,

故选b.

?点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.

《初一上册数学教案7篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭