三角形内角和教案模板8篇
教案是教师与学生之间有效沟通的重要工具,教案的编写过程可以促使教师更加注重学生的综合素质培养,心得范文网小编今天就为您带来了三角形内角和教案模板8篇,相信一定会对你有所帮助。
三角形内角和教案篇1
【设计理念】
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
【学情分析】
学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。
【学习目标】
1.通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。
2.学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。
3.在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
4.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
【教学重点】
探索和发现“三角形的内角和是180°”。
?教学难点】
运用三角形的内角和解决实际问题。
?教学准备】
教师:多媒体、剪好的不同类型的三角形。
学生:量角器、剪刀、剪好的不同类型的三角形。
【教学过程】
一、创设情景,引出问题
1.猜谜语。
师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(出示谜语)。
师:打一几何图形。猜猜看!
学生猜谜语。
根据学生的回答,出示谜底。
师:真是三角形,同学们的反应真快!
2.复习三角形的内容。
其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?
指名学生回答。
(当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的.3个角,并标出角。)
3.引出课题。
师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。
(板书课题:三角形的内角和)
二、探究新知
1.讨论、交流验证知识的方法。
师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)
学生汇报:①用量的方法;②用拼的方法;③用折的方法...
2.操作验证。
师:同学们的点子还真多!现在请同学们拿出准备好的三角形,
选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。(或说研究)等研究完了我们再交流,发现了什么,好吗?好,现在开始!
3.学生汇报。
师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?
学生汇报,教师适时板书。
①用量的方法:
指名学生汇报度量的结果,教师板书。(指两名学生汇报)
教师白板演示测量方法,并计算和板书出结果。
教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)
师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,使用正确的测量方法,还是可以得到精确的结果。看来这个办法不能使人很信服,有没有别的方法验证?
②用拼的方法
a.学生汇报拼的方法并上台演示。
我这里也有一个钝角三角形,请两名同学上台演示。
b.请大家四人小组合作,用他的方法验证其它三角形。
c.展示学生作品。
d.师展示。
师:我们用量、拼得到了180度,还有什么方法?
③用折的方法
师:还想向同学们请同学们看一看他是怎么折的(演示)。
师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?
教师根据学生板书:(任意)三角形的内角和是180度。
④数学文化
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。
三、巩固练习
数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!
1.出示:我是小判官(对的打“√”错的“×”。)
强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?
教师:为什么不是360°?学生回答。
2.接下来我要奖励你们一个游戏:《帮角找朋友》
3.求未知角的度数。
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
①出示第一个三角形,学生尝试独立完成,教师巡视。
教师:刚才,我们利用了三角形的什么?
②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。
a.我三边相等;b.我是等腰三角形,我的顶角是96°。c.我有一个锐角是40°。
教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。
四、拓展延伸
师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?
接着让学生尝试求5边形和6边形的内角和。
小结:求多边形的内角和,可以从一个顶点出发,引出它的对角线,这样就把这个多边形分割成了n个三角形,它的内角和就是n个180°
五、课堂总结。
师:这节课你有什么收获?
学生自由发言。
师生交流后总结:知道了三角形的内角和是180度,根据这个规律知道可以用180°减去两个内角的度数,求出第三个未知角的度数。
同学们,只要我们在日常的学习中,细心观察,大胆质疑,认真研究,一定会有意想不到的收获。
六、作业布置
完成教材练习十六的第1、3题。
七、板书设计:
( 任意)三角形的内角和是180°
∠1+∠2+∠3=180°
度量 剪拼 折拼
三角形内角和教案篇2
尊敬的各位评委老师:
大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:
一、教材分析
“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
二、教学目标
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
三、教学重难点
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
四、学情分析
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
五、教学法分析
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。
六、课前准备
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
七、教学过程
(一)、创设情境,激趣导入
导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。
(二)、自主探究、合作交流
1、探索特殊三角形内角和
拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°
90°+45°+45°=180°
从刚才两个三角形内角和的计算中,你发现了什么?
2、探索一般三角形的内角和
一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。
3、汇报交流
请小组代表汇报方法。
1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)
没有统一的结果,有没有其他方法?
2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)
3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)
4)教师课件验证结果。
请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?
学生回答后教师板书:三角形的内角和是180°
为什么有的小组用测量的方法不能得到180°?(误差)
4、验证深化
质疑:大小不同的三角形,它们的'内角和会是一样吗?(一样)
谁能说一说不能画出有两个直角的三角形的原因?
(三)、应用规律,解决问题:
揭示规律后,学生要掌握知识,就要通过解答实际问题。
1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。
第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)
第二关,提高练习,
①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。
让学生灵活应用隐含条件来解决问题,进一步提高能力。
2、小组合作练习,完成相应做一做。
(四)、课堂总结,效果检测。
一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。
(五)作业课下继续探究三角形,看你有什么新发现。
八、板书设计
通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!
三角形内角和教案篇3
教学目标:
1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。
2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。
3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。
教学准备:
三角板,量角器、点子图、自制的三种三角形纸片等。
教学过程:
一、提出猜想
老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90+60+30=180,90+45+45=180
看了这2个算式你有什么猜想?
(三角形的三个角加起来等于180度)
二、验证猜想
1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。
老师注意巡视和指导。交流各自加得的结果,说说你的发现。
2、折、拼:学生用自己事先剪好的图形,折一折。
指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。
继续用该方法折钝角三角形,得到同样的结果。
直角三角形的折法有不同吗?
通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。
3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。
在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。
小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。
4、试一试
三角形中,角1=75,角2=39,角3=( )
算一算,量一量,结果相同吗?
三、完成想想做做
1、算出下面每个三角形中未知角的度数。
在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。
指出:在计算的时候,我们可根据具体的数据选择更佳的`算法。
2、一块三角尺的内角和是180 ,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?
可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?
然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。
3、用一张正方形纸折一折,填一填。
4、说理:一个直角三角形中最多有几个直角?为什么?
一个钝角三角形中最多有几个直角?为什么?
四、布置作业
第4、5题
三角形内角和教案篇4
教学内容:
p.28、29
教材简析:
本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。
教学目标:
1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。
2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。
3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。
教学准备:
三角板,量角器、点子图、自制的三种三角形纸片等。
教学过程:
一、提出猜想
老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90+60+30=180,90+45+45=180
看了这2个算式你有什么猜想?
(三角形的'三个角加起来等于180度)
二、验证猜想
1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。
老师注意巡视和指导。交流各自加得的结果,说说你的发现。
2、折、拼:学生用自己事先剪好的图形,折一折。
指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。
继续用该方法折钝角三角形,得到同样的结果。
直角三角形的折法有不同吗?
通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。
3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。
在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。
小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。
4、试一试
三角形中,角1=75,角2=39,角3=( )
算一算,量一量,结果相同吗?
三、完成想想做做
1、算出下面每个三角形中未知角的度数。
在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。
指出:在计算的时候,我们可根据具体的数据选择更佳的算法。
2、一块三角尺的内角和是180 ,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?
可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?
然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。
3、用一张正方形纸折一折,填一填。
4、说理:一个直角三角形中最多有几个直角?为什么?
一个钝角三角形中最多有几个直角?为什么?
四、布置作业
第4、5题
三角形内角和教案篇5
(一)教材的地位和作用
?三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义。
(二)教学目标
基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:
1。通过"量一量","算一算","拼一拼","折一折"的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。
2。通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想。
3。通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。
(三)教学重,难点
因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。
二、说教法,学法
本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。
因为《课程标准》明确指出:"要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力"。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从"猜测――验证"展开学习活动,让学生感受这种重要的数学思维方式。
三,说教学过程
我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。
引入
呈现情境:出示多个已学的平面图形,让学生认识什么是"内角"。( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的.和是多少 (360°)三角形有几个内角呢 从而引入课题。
【设计意图】
让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的"横空出现"。
猜测
提出问题:长方形内角和是360°,那么三角形内角和是多少呢
【设计意图】
引导学生提出合理猜测:三角形的内角和是180°。
(三)验证
(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度
(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。
(3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。
(4)画:根据长方形的内角和来验证三角形内角和是180°。
一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。
【设计意图】
利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。
深化
质疑: 大小不同的三角形, 它们的内角和会是一样吗
观察:(指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。)
结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。
实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。
结论:活动角就是一个平角180°, 另外两个角都是0°。
【设计意图】
小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用"角的大小与边的长短无关"的旧知识来理解说明。
对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。
(五)应用
1。基础练习:书本练习十四的习题9,求出三角形各个角的度数。
2。变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗
3。(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少
(2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少
4。智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题
【设计意图】
习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。
第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。
第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。
第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。
第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。
三角形内角和教案篇6
【教材内容】:
北师大版四年级数学下册
【教学目标】:
1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。
2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。
3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。
【教学重点和难点】:
重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。
【教材分析】
?三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。
【教学过程】
一、创设情境,激发兴趣。
出示课件,提出两个两个疑问:
1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的。吗?
2、三个形状不一样的三角形的争论。我们的形状不一样,所以我们的内角和各不相同,是这样的吗?老师发现它们争论的焦点是三角形的内角和的问题,那什么是三角形的内角?什么又是三角形的内角和呢?
二、初建模型,实际验证自己的猜想
在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。这时教师要组织学生进行小组合作,每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形)的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。
三角形的形状
三角形每个内角的度数
内角和
锐角三角形
钝角三角形
直角三角形
等腰三角形
等边三角形
三、再建模型,彻底的'得出正确的结论
因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。因为我们在测量时由于测量人不同、测量工具不同可能产生一些误差。有的同学难免可能猜想三角形的内角和就是180度呢?我们继续研究和探索。除了测量外我们是否可以利用我们手中的三角形通过拼一拼、折一折、画一画的方法来证明三角形的内角和都是180度呢?教师放手让学生去思考、去动手操作,对有困难和有疑问的同学进行提示和指导。然后让学生到前面演示验证的方法,教师借助多媒体进行演示。
四、应用新知,巩固练习
1、算一算,对于不同形状的三角形给出其中的两个角求第三个角的度数。(1小题属于基本练习)
2、试一试,在直角三角形中已知其中的一个角求另一个角的度数
3、想一想,已知等腰三角形的顶角如何算出它的两个底角;已知等腰三角形的一个底角的度数求三角形的顶角。
4、说一说,判断三角形的两个锐角的和大于90度;直角三角形的两个两个锐角的和等90度;等腰三角形沿着高对折,每个三角形的内角和是90度。这些说法是否正确?由两个三角形拼成一个大的三角形,大三角形的内角和是360度,对吗?
五、拓展与延伸
通过三角形的内角和是180度的事实来探讨四边形、五边行的内角和。
三角形内角和教案篇7
【教学目标】
1、知识与技能:
(1)理解和掌握三角形的内角和是180°。
(2)运用三角形的内角和知识解决实际问题和拓展性问题。
2、过程与方法:
(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
(2)知道三角形两个角的度数,能求出第三个角的度数。
(3)发展学生动手操作、观察比较和抽象概括的能力。
3、情感态度与价值观:
让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。
【教学重、难点】
教学重点:理解掌握三角形的内角和是180°。
教学难点:运用三角形的内角和知识解决实际问题。
【教具准备】
教学课件、各种三角形
【教学过程】
一、创设情景,引出问题
1、猜谜语:
形状似座山,稳定性能坚。三竿首尾连,学问不简单。
(打一图形名称)
2、猜三角形
师:老师这有1个三角形,它的一部分被智慧星给遮住了,猜猜这是什么三角形?它里面会出现两个直角吗?为什么?
3、引出课题。
师:为什么不会出现两个直角?今天我们就再次走进数学王国,探讨三角形的内角和的奥秘。(板书课题)
二、探究新知
1、三角形的'内角和
师:三角形内角和指的是什么?
2、猜一猜。
师:这个三角形的内角和是多少度?
3、验证。
让学生用自己喜欢的方式验证三角形的内角和是不是180°。
4、学生汇报。
(1)测量
师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?有没有别的方法验证?
(2)剪拼
a、学生上台演示。
b、请大家三人小组合作,用剪拼的方法验证其它三角形。
c、师演示。
(3)折拼
师:有没有别的验证方法?我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。
(4)结论:三角形的内角和是180。
(5)数学小知识。
5、巩固知识。
(1)解决课前问题,为什么一个三角形不可能有两个直角?一个三角形中可以有2个钝角吗?
(2)把两个小三角形拼在一起,问:大三角形的内角和是多少度。
教师:为什么不是360°?
三、解决相关问题
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
1、看图,求未知角的度数。
2、判断。
3、如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?
求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。
(3)我有一个锐角是40°。
4、求四边形、五边形内角和。
四、总结。
师:这节课你有什么收获?
五、板书设计:(略)
三角形内角和教案篇8
教材分析
教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。
教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。
三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。
另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。
学情分析
学生在前面的学习中已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,知道了平角是180°;学生通过前几年的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯,所以在学生具备这些数学知识和能力的基础上,来引导学生探索和发现三角形内角和是180°这一性质。
要让学生明确一个三角形分成两个小三角形后,每个三角形内角和还是180°,两个小三角形拼成一个大三角形,大三角形的内角和也是180°。
教学目标
1、知识目标:让学生探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。
2、能力目标:培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。
3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。
教学重点和难点
教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题。
教学难点:让学生经历探索和发现三角形的内角和是180°的过程。
教学过程:
(一)、激趣导入:
1、认识三角形内角
我们已经认识了什么是三角形,谁能说出三角形有什么特点?
(三角形是由三条线段围成的图形,三角形有三个角,…。)
请看屏幕(课件演示三条线段围成三角形的过程)。
三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角
形的内角。(这里,有必要向学生直观介绍“内角”。)
2、设疑激趣
现在有两个三角形朋友为了一件事正在争论,我们来帮帮它们。(播放课件)
同学们,请你们给评评理:是这样吗?
现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?
这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)
(二)、动手操作,探究新知
1、探究特殊三角形的内角和
师拿出两个三角板,问:它们是什么三角形?
(直角三角形)
请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。
(由于学生在四年级(上册)教材里已经知道了两块三角尺上的'每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)
从刚才两个三角形内角和的计算中,你们发现了什么?
(这两个三角形的内角和都是180°)。
这两个三角形都是直角三角形,并且是特殊的三角形。
2、探究一般三角形内角和
(1).猜一猜。
猜一猜其它三角形的内角和是多少度呢?(可能是180°)
(2).操作、验证一般三角形内角和是180°。
所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
(可以先量出每个内角的度数,再加起来。)
测量计算,是吗?那就请四人小组共同计算吧!
老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:
(3)小组汇报结果。
请各小组汇报探究结果
提问:你们发现了什么?
小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。
3继续探究
(1)动手操作,验证猜测。
没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?
(先小组讨论,再汇报方法)
大家的办法都很好,请你们小组合作,动手操作。
(2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。
学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)
我们可以得出一个怎样的结论?(三角形的内角和是180°)
引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,使学生证实三角形内角和确实是180°,测量计算有误差。
5、辨析概念,透彻理解。
(出示一个大三角形)它的内角和是多少度?
(出示一个很小的三角形)它的内角和是多少度?
一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答360°,有的180°.)
把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°。)
这两道题都有两种答案,到底哪个对?为什么?
(学生个个脸上露出疑问。)
大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。
经过一翻激烈的讨论探究后,学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°
(三)小结
刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。
(四)、巩固练习,拓展应用
下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)
1、求三角形中一个未知角的度数。
(1)在三角形中,已知∠1=85°,∠2=65°,求∠3。
(2)在三角形中,已知∠1=98°,∠2=49°,求∠3。
2、判断
(1)一个三角形的三个内角度数是:90°、75°、25°。()
(2)一个三角形至少有两个角是锐角。()
(3)钝角三角形的内角和比锐角三角形的内角和大。()
(4)直角三角形的两个锐角和等于90°。()
3、解决生活实际问题。
(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?
(2)交通警示牌“让”为等边三角形,求其中一个角的度数。
4、拓展练习。
利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)
小组的同学讨论一下,看谁能找到最佳方法。
学生汇报,在图中画上虚线,教师课件演示。
请同学们自己在练习本上计算。
(四)、课堂总结
通过这节课的学习,你有哪些收获?