分数与除法教案参考5篇
教案的充分准备可以帮助我们有条不紊地组织课堂教学,确保教学过程的有序进行,教案的编写展示了教师对学生学习过程的关注和指导能力,心得范文网小编今天就为您带来了分数与除法教案参考5篇,相信一定会对你有所帮助。
分数与除法教案篇1
教学目标
1.通过一组习题,学生能够理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2.通过学生试做例1,在理解算理的基础上总结出分数除以整数的计算法则,并能正确地进行计算。
3.培养学生分析能力、知识的迁移能力和语言表达能力。
教学重点和难点
正确的归纳出分数除以整数的计算法则,并能正确地进行计算。
教学过程设计
(一)复习导入
1.投影,看乘法算式写出两道除法算式。
67=42
( )( )=( )
( )( )=( )
问:谁还记得整数除法的意义是什么?
板书:积 一个因数 另一个因数
师:这节课我们来学习分数除法的意义和计算法则。(板书课题)
首先研究分数除法的意义。(板书:意义)
(二)新授教学
1.分数除法的意义。
我们来看下面的问题。(投影出示)
(1)每人吃半块月饼,5人一共吃几块月饼?
问:谁会列式计算?
问:你是怎么想的?
(2)两块半月饼,平均分给5个人,每人分得多少月饼?
问:怎样列式计算呢?
问:没有学过分数除法,得数怎么得来的?
(3)两块半月饼,分给每人半块,可分给几个人?
问:谁会列式计算?
问:为什么这样列式,怎样算出的得数?
观察这三个算式,它们之间有什么联系?
同桌讨论,指名回答。
生:后两道除法是根据第一道乘法变化而来的,被除数相当于乘法中的积,除数是乘法中的一个因数,商是乘法中的另一个因数。
板书:积 一个因数 另一个因数
问:与整数除法对比一下,分数除法的意义是什么?
同桌互相说一说,指定2~3名学生说。
板书:已知两个因数的积与其中的一个因数,求另一个因数的运算。
师:同学们说得好极了!书上是怎么说的?打开书第30页看下面几行字,边读边画出来。
做一做:(同学们做在书上。投影订正。)
根据下面的'乘法算式和分数除法的意义,写出两个除法算式的得数。
问:你根据什么写出得数的?
师:分数除法中的商可以根据与它有关的乘法得出。但是不能每道除法都这么做,下面我们来研究分数除以整数的计算法则。(板书:法则)
2.分数除以整数的计算法则。
为什么这样列式?
(2)根据题意画出线段图。
生:把1米平均分成7份,取其中的6份。
(3)4人一组讨论:怎样计算出每段长多少米呢?试说一说算理。
师:有道理,结果也正确,还有别的方法吗?
师:这种方法也有道理,分数除以整数到底哪种方法好呢?同学们任选一种方法做下面一题。
学生做完后提问:你们用的哪种方法?有用第一种方法的吗?为什么不用?
师:看来第一种方法不能解决所有的分数除以整数的题。第二种方法是可以的。
(4)观察第二种方法,看哪儿没变,哪儿变了?是怎么变的?
生:被除数不变,除号变乘号,除数变成了它的倒数。
(5)试着说一说分数除以整数的计算法则。
板书:分数除以整数( )等于分数乘以这个整数的倒数。
想:为什么要空几个字的地方?为什么要加0除外三个字?(补充板书:0除外)
问:谁再来说一说分数除以整数的计算法则。同桌互相说一说。要真正理解。
计算法则是否会用呢?我们来自测一下。
投影做一做,学生做在书上,投影订正。
(三)巩固练习
1.计算下面各题。(投影)
2.判断下面的计算过程是否正确。对的举,错的举,并说明理由。(投影出示)
(2)题为什么对?举错的说说你的想法?1的倒数是几?
(3)错在被除数变倒数了,而除数没有变。问:这道怎么改?
(4)错在除号没有变成乘号。怎么改?
(5)错在除数没有变成倒数。怎么改?
去计算。)
师:同学们审题非常认真,判断力很强。我们做题时就不应该出现上面的错误了。
下面我们计算几道题,看谁能正确运用计算法则。
3.计算:
4.想一想:如果a是一个自然数,
(3)用一个数检验上面的结果是否对。
(四)课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
(五)作业
课本32页第3,4,5,6题。
课堂教学设计说明
这节课有两部分内容。第一部分是分数除法的意义。在处理这部分内容时,首先出示一组整数乘除法的复习题,复习整数除法的意义,然后通过书中一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是分数除以整数的计算法则,这是本节课的重点和难点。通过画图帮助学生理解题意,让学生讨论试做例1的方法,引导学生自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算。
分数与除法教案篇2
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教具准备:多媒体课件
教学过程:
一、旧知铺垫(课件出示)
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3 × ×
× ×6 ×
二、新知探究
(一)、教学例1
1、课件出示自学提纲:
(1)出示插图及乘法应用题,学生列式计算。
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
2、学生自学后小组间交流
3、全班汇报:
100×3=300(克)
a、3盒水果糖重300克,每盒有多重? 300÷3=100(克)
b、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)
×3= (千克) ÷3= (千克) ÷3=3(盒)
4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:
分数除法的意义与整数除法相同,都是已知两个因数的积与其
中一个因数,求另个一个因数。都是乘法的逆运算。
(二)、巩固分数除法意义的练习:p28“做一做”
(三)、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
a、 ÷2= =,每份就是2个。
b、 ÷2= × =,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、当堂测评(课件出示)
1、计算
÷3 ÷3 ÷20 ÷5 ÷10 ÷6
2、解决问题
(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?
(2)、正方形的周长是4/5米,它的边长是多少米?
学生独立完成。
教师讲评,小组间批阅。
四、课堂总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
教学后记
分数与除法教案篇3
教学内容
复习分数除法的意义和计算
教材第46、第47页的内容。
教学目标
1.使学生进一步明确本单元的知识体系,加深对分数除法的意义和计算方法的理解。
2.熟练掌握分数除法的计算法则,提高灵活解题的能力。
3.在整理知识体系的过程中,帮助学生掌握复习的方法。
重点难点
重点:概念和计算法则的整理。
难点:运用所学概念,灵活解决问题。
教具学具
练习题投影片。
教学过程
一、整理本单元的知识
1.课前布置作业,学生自己整理本单元的知识点。
2.展示学生的知识结构图。
二、复习分数除法的意义和计算法则
1.回忆。
分数除法可以分成几种情况,请你分别举例说说它们的意义和计算方法,小组讨论。
2.根据学生的汇报整理成下表。
三、课堂作业新设计
四、思维训练参考答案
分数与除法教案篇4
教学目标:
1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数式另一个数的几分之几。
2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。
教学重难点:
理解分数与除法的关系,会用分数表示两个整数相除的商。
教学过程:
一、复习引入
1、口算。
(1)把8块饼干平均分给4个小朋友,每位小朋友分得几块?
(2)把4块饼干平均分给4个小朋友,每位小朋友分得几块?
口答列式及结果。
2、说说把一个数平均分成4份,应该用什么方法列式?
二、教学新课
1、教学例6。
(1)出示例6。
(2)把3块饼干平均分成4份,每人分得几块?应该怎样列式?
谈话:把3块月饼平均分给4个小朋友,每人能分得1块吗?
指出:每人分得的不满1块,结果可以用分数表示。
那么,可以用怎样的分数来表示3÷4的商呢?
(3)动手操作,解决问题。
谈话:请大家拿出准备好的3张同样大小的圆形纸片,把它们看作3块月饼,按题目要求来分一分,看结果是多少?
学生操作。
交流,并演示分法。
①一块一块地分,把每个圆片平均分成4份,每人每次分得1/4块,结果每人分得3个1/4块,也就是3/4块。
②一块一块地分之后,把12个1/4块合在一起平均分成4份,每份是3个1/4块,再把3个1/4块拼在一起,每人分得3/4块。
③把3个圆片叠在一起,平均分成4份,每份是3块的1/4,再把3个1/4块拼在一起,每人分得3/4块。
(4)如果把3块饼平均分给5个小朋友,每人分得多少块?怎样列式?
3÷5的商是多少?怎样用分数表示?
在小组中说说自己的想法。汇报各自想法。
板书:3÷5=3/5(块)
(5)归纳方法。
t;t;t;12>>>
观察上面两个等式,你发现分数与除法有什么关系?
在小组中说说。
板书:被除数÷除数=被除数/除数
如果用a表示被除数,用b表示除数,这个关系式可以怎样写?
a÷b=a/b
b可以是0吗?为什么?
互相说说分数与除法的关系。
板书课题:分数与除法的关系。
2、试一试。
(1)独立完成填空。
(2)汇报结果,说说是怎样想的?根据什么得到的?
指出:两个数相除,得不到整数商时,可以用分数表示。
3、练一练。
(1)完成第1题。
独立填写,比较上下两行有什么不同?
指出:用分数表示整数除法的商,要用除数作分母,被除数作分子。
一个分数也可以看作两个数相除,分子相当于被除数,分母相当于分子。分数线相当于除号(2)完成第2题。
独立完成填写,集体核对。
说说是怎样想的?
三、巩固练习
1、完成练习八第1题。
在小组中说说是怎样想的?集体核对。
2、完成第2题。
独立填写,集体核对。
3、完成第3题。
独立填写,说说是怎样想的?
把1米长的彩带平均分成3份,求1份有多长,可以怎样列式?(1÷3)
把2米长的彩带平均分成3份,求1份有多长,可以怎样列式?(2÷3)
4、完成第4题。
独立填写,集体核对。
问:这两个问题有什么不同?
指出:每人分得这袋糖的的几分之几,是把单位“1”平均分成5分;每人分得几分之几千克,是把2千克平均分成5份。
5、完成第5题。
独立完成填写。
说说你是怎样想的?
联系分数的意义填空,根据分数和除法的关系列式。
四、课堂小结
今天这节课,学习了什么内容?互相说说自己的收获。
分数与除法教案篇5
设计说明
分数乘、除法及比是本册教材的重点内容,为突出知识间的内在联系,帮助学生形成知识网络,本节复习课在教学设计上主要关注以下几个方面:
1.重视对分数乘、除法之间的关系及分数乘、除法计算方法的复习。
教学中,结合教材内容,进一步强调分数乘、除法之间的关系,加强计算方法的指导,使学生在进一步理解并掌握分数除法是分数乘法的逆运算的同时,计算能力得到提高。
2.重视对相关概念、性质及某些知识间相互关系的复习。
教学中,把比的相关概念、倒数的相关概念、比的性质以及比与分数、除法的关系等作为重要的复习内容,结合教材相关习题进行全面、系统地复习,使学生加深对概念的理解,同时将比与分数、除法联系起来。
3.重视对学生解决问题能力的培养。
教学中,把用分数乘、除法解决问题和用比解决实际问题作为重要的复习内容之一,结合教材习题,重点分析题中的数量关系,使学生通过对比练习,更好地掌握解决分数乘、除法问题以及比的有关问题的思路,提高学生分析问题、解决问题的能力。
课前准备
教师准备ppt课件
教学过程
⊙整理复习
1.结合教材习题,复习分数乘、除法的意义,计算方法及一些特殊规律。(板书课题)
(1)(出示课件)先想一想分数乘、除法应该怎样计算,再计算下面各题。
×=×=×18=
÷=÷=21÷=
÷=÷=×=
①复习分数乘法的计算方法。
(分子与分子相乘的积作分子,分母与分母相乘的积作分母。能约分的可以先约分再计算)
②复习分数除法的计算方法。
[甲数除以乙数(0除外)等于甲数乘乙数的倒数]
③生独立计算。
④观察左边两列算式,你能发现乘法与除法之间有什么规律吗?
(乘法与除法是互逆运算)
(2)结合×和×18复习分数乘法的意义。
(一个数乘分数表示求这个数的几分之几是多少;一个数乘整数表示求几个相同加数的和的简便运算,与整数乘法的意义相同)
(3)结合÷和21÷复习分数除法的意义。
(分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算)
(4)复习分数四则混合运算。
①分数四则混合运算的运算顺序是怎样的?
(与整数四则混合运算的运算顺序相同)
②下面各题怎样简便就怎样算,并说一说算理。
+++
15×
+3÷
3.7×+1.3÷
÷
0.5×
2.复习倒数的意义及相关知识。
(1)什么叫倒数?0为什么没有倒数?
(乘积是1的两个数互为倒数。因为0和任何数相乘都等于0,所以0没有倒数)
(2)写出下面各数的倒数。
51
(3)判断下面的说法是否正确。
①一个真分数的倒数一定比这个真分数大。()
②一个数乘分数的积一定比原来的数小。()
③一个数除以分数的商一定比原来的数大。()
3.复习比的意义及相关知识。
(1)(出示课件)说出下面每个比的前项、后项。
2∶50.6∶0.3
(2)结合上题,复习比的意义及比的各部分名称。
(两个数相除又叫做两个数的比,比号前面的数叫做比的.前项,比号后面的数叫做比的后项)
(3)复习比值的意义及求法。
(比的前项除以比的后项,所得的商叫做比值)
(4)复习比与分数、除法的关系。
(根据学生的回答进行对比复习。比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商)