分数除法三教案推荐6篇

时间:2024-03-05 17:01:47 分类:公务心得体会

通过教案的规划,教师可以更好地掌握学生的学习需求和特点,因材施教,提高学生的学习兴趣,通过编写教案,我们可以有计划地安排教学活动和任务,使教学更加有针对性,下面是心得范文网小编为您分享的分数除法三教案推荐6篇,感谢您的参阅。

分数除法三教案推荐6篇

分数除法三教案篇1

创境激疑

(一)导入

1.复习:什么叫分数?

2.用分数表示出下面各图的涂色部分。(出示教具)请学生分别说出每个分数的意义。

合作探究

(二)教学实施

1.提问:比较上面三个分数的分子与分母的大小?

这些分数比1大还是比1小?并说明理由。

2.学生观察后,试着回答。

学生:(第一个圆)平均分成了3份,这样的3份也

是一个整圆,表示1,而涂色部分只有1份,所以比l小。再请学生分别说出另外两个分数。

3.老师指出:像上面的3个分数都是真分数。我们过去接触过的分数,大都是真分数。那么,你能说说什么叫真分数吗?

4.让学生独立思考后,与同桌交流一下,再指名回答。

5.小结:分子比分母小的分数叫做真分数。真分数小于1。

6.老师再出示例2中图形的教具。

7.请学生分别用分数表示每组图形中的阴影部分。

提问:第一幅图中,把一个圆平均分成几份?表示有这样的几份?怎样用分数表示?

老师强调:第二组图和第三组图中每个圆都表示“1”。

拓展应用

1.在分数a/b中,当a小于时,它是真分数;当a大于或等于时,它是假分数。

2.在分数b/a中,当a小于或等于时,它是假分数;当a大于时,它是真分数。

3.分数单位是的最小真分数是(),最小假分数是。

4.写出两个大于的真分数和。

总结

通过本节课的学习,我们认识了真分数和假分数的特征,真分数的分子比分母小,真分数小于1;假分数的分子比分母大或分子和分母相等,假分数大于或等于1。通过学习,要会正确区分哪个分数是真分数,哪个分数是假分数,并会正确应用概念灵活解题。

作业布置

教材54页做一做

板书设计

教学札记

分数除法三教案篇2

教学内容:

分数除法的意义和分数除以整数(教科书第25页——26页的例1,练习七第1——7题)。

教学目标:

使用学生理解分数除法的意义,掌握分数除以整数的计算方则,并正确计算分数除以整数。

教学重点:

分数除以整数的计算方法 。

教学难点:

除转化为乘和道理。

教学过程:

一、 复习

1.口答下面各题的倒数。

2 、1、0.4

2.根据一个乘法算式写出两个除法算式。

3×15=45 125×8=1000

二、 新授

揭示课题:分数除法

1.分数除法的意义和计算法则

(1) 出示25页的月饼图。

(2) 引导学生回答问题

1)每人吃半块月饼。4个人一共吃多少块?怎样列式?得多少?

板书:×4=2 (块)

2)再看把两块月饼平均分给4个人,每人分得几块?怎样列式?得多少?

板书:2÷4=(块)

3) 如果把两块月饼平均分给每个人半块,可以分给几人?怎样列式?得多少?

板书:2÷=4(人)

(3) 让学生观察比较(板书的)3个式子的已知数和得数。

明确:第一个算式是已知两个因数(和4)求它们的积(2),用乘法计算。

第二算式是已知两个因数的积2与其中一个因数4,求一个因数,用除法计算。 第三算式是已知两个因数的积2与其中一个因数,求一因数4,用除法计算。

小结:分数除法的意义。

强调:分数除法的意义和整数除法的意义相同。

(4) 练习:教科书第25页"做一做。

2.分数除以整数的计算方法。

(1)出示例子:把米铁丝平均分成2段,每段长多少米?

(2)启发学生分析数量关系。(画线段图表示)

米是1米的,把1米平均分成7份,表示其中的6份。6份是,再加上米米里面有6个米,要把米平均分成2段实质就是把6个米平均分成2份,每份是3个米,就是米。

板书 解法1:÷2==(米)

使学生明白。

1)分数除以整数,可以把分数的分子除以整数作分子,分母不变。

2)这种计算方法有限制条件的,分子必须能被整数整除。

还有其它的解法吗?

引导学生结合图形在学过知识的基础上理解到,把米平均分成2段,每段长多少米实际上就是求米的`是多少,所以用×来计算。

板书 解法2:÷2=×=(米)

(3) 小结:分数除以整数的计算方法。

板书:分数除以整数(0除外),等于分数乘以这个娄的倒数。

强调。

1)被除数不变;

2)在“÷”转化为“×”的同时,除数的分子、分母调换位置;

3)0不能做除数,0没有倒数;

4)这种计算方法在一般情况下都可以进行,应用普遍。

5)练习:教科书第26页“做一做”。3、看教科书第25——26页,注意解决学生提出的问题。

三、 巩固练习

练习七第1、3题。

四、 作业

练习七第2、4、5、6题

五、 课外思考

练习七第7题。

分数除法三教案篇3

一、复习引新

1.说出下面各数的倒数。

0.36

2.已知12645=5670,直接说出567045和5670126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)

3.引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法。(出示课题)

二、新授教学

(一).教学分数除法的意义(课件一下载)

①每人吃半块月饼,4个人一共吃多少块月饼?

半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?()

②两块月饼,平均分给4人,每人分得多少块?怎样列式?

列式:24

③两块月饼,分给每人半块,可以分给几个人?

列式后,说一说结果是多少?你是如何得出结果的?

④组织学生讨论:分数除法的意义。

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

⑤练习反馈。

根据:,写出,(二).教学分数除以整数

1.出示例1、把米铁丝平均分成2段,每段长多少米(课件二下载)

①求每段长多少米怎样列算式?②以小组为单位讨论一下得多少呢?

米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。

③、教师板书整理。

(米)

2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?

也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:把米铁丝平均分成6段,就是求米的是多少,列式是:3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?(米)

为什么采用转化成分数乘法这种方法比较好呢?

组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。

4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。

三、巩固练习

1.计算下面各题:

学生独立完成,教师巡视,进行个别辅导。

2.请同学求未知数①②3.判断。

①分数除法的意义与整数除法的意义相同。()

②已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()

③()

④()

⑤()

4.解答下面各题。

①把平均分成4份,每份是多少?

②什么数乘以6等于?

③一个正方形的周长是米,它的边长是多少米?

四、课堂总结

这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

五、课后作业

练习七1、2、3、4

六、板书设计

分数除法三教案篇4

第课时分数与除法

1、通过学习,使学生进一步理解分数的意义,知道分数还可以表示除法的商,被除数相当于分数的分子,除数相当于分数的分母,学生能够用分数表示整数除法的商。

2、通过学习,使学生进一步理解分数的意义,知道分数还可以表示数量,理解并掌握1个的几分之几就是几分之几个,几个的几分之一就是几分之几个。

3、能运用分数与除法的关系解决相关的问题。

4、让学生经历分数与除法的关系的探究过程,经历求一个数是另一个数的几分之几的解答过程。

?重点】理解和掌握分数与除法的关系。

?难点】理解用分数可以表示两个数相除的商。

?教师准备】 ppt课件,口算卡片。

?学生准备】 3个完全相同的圆片,剪刀。

填一填。

(1)表示的意义是()。

(2)的分数单位是(),它有()个这样的分数单位。

?参考答案】

(1)4个是多少

(2)7

老师出示口算卡片,学生口答。

8÷4= 15÷5= 12÷3=

5÷4= 6÷5= 7÷3=

师:比较这6道题的商,你发现了什么

预设生:上面3题的.商没有余数,下面3题的商都有余数。

师:以前计算整数除法时,如果遇到除不尽或得不到整数商的情况,我们就只算到个位,然后写出余数是几,有了分数以后,就可以解决这个问题了。除法的商怎么能用分数表示呢除法与分数有什么关系呢这就是我们今天要研究的问题。(老师板书课题:分数与除法)

由比较两组口算题的结果引入课题,使学生明确用分数可以表示除法的商。

师:请同学们回忆一下,在计算除法时,如果遇到除不尽或得不到整数商的情况,我们是怎样处理的。

预设生:可以用小数表示商,或者除到个位后,用余数表示结果。

师:你们知道吗有了分数,再遇到这种情况,我们就可以用分数来表示商。想不想知道怎样用分数来表示除法的商(想)要想知道怎样表示,就要先理解分数与除法的关系。(老师板书课题:分数与除法)

通过老师提问,引起学生思考,激发学习欲望。

一、教学例1,掌握用分数表示除法的商的方法。

1、ppt出示例1。

(1)学生看图、读题,思考解答方法。

(2)指名回答:求每人分得多少个,怎样列式

预设生:根据题意应该列式为:1÷3。

(3)用ppt出示:用一个圆表示一个蛋糕,把一个圆平均分成3份,其中1份涂色。让学生根据图意说出结果是多少。

预设生:每人分得个。

老师根据学生回答板书:1÷3=(个)。

2、巩固练习。

用分数表示下面各题的商。

3÷7= 5÷8= 9÷10=

21÷32= 4÷11= 6÷13=

?参考答案】

使学生了解用分数表示商的方法。

二、教学例2,使学生理解分数与除法的关系。

1、ppt出示例2。

(1)学生看图、读题,思考解答方法。

(2)指名回答:求每人分得多少个,怎样列式

预设生:根据题意应该列式为:3÷4。

(3)让学生拿圆片代替月饼实际分分,可能有不同的分法。然后让学生汇报。

(4)用ppt出示:把3个月饼平均分成4份,其中1份是3个四分之一个月饼,再把这3个四分之一拼起来,可以看出得到了四分之三个月饼。然后让学生说出结果是多少。

预设生:每人分得个。

老师根据学生的回答进行板书:3÷4=(个)。

2、老师引导学生观察除法算式与分数,探究它们之间的关系。

(1)用文字进行表述例1和例2的算式。

1÷3=

3÷4=

被除数÷除数的结果怎样表示得到:

被除数÷除数=

(2)学生在小组中学习用语言描述分数与除法之间的关系,然后指名回答。

预设生:被除数相当于分数中的分子,除数相当于分数中的分母,除号相当于分数中的分数线。

(3)小组讨论,用字母表示出分数与除法的关系,然后派代表发言。

预设生:a÷b=。

(4)引导学生思考b可以是0吗学生通过小组讨论后明确,因为除数不能为0,所以分数的分母不能为0,因此b也不能等于0。

老师根据学生的回答进行板书。

a÷b=(b≠0)

被除

除数

(5)教师小结:现在学习了分数与除法的关系,复习题中表示的意义,还可以看作把“4”平均分成5份,表示这样一份的数。

通过小组讨论,使学生明确分数与除法的关系。

三、教学例3,使学生经历求一个数是另一个数的几分之几的过程,进一步理解分数的意义,知道分数还可以表示两种数量比较的关系。

1、ppt出示例3。

(1)学生读题,理解题意。

(2)出示自学要求:

①想一想,答案是多少

②有什么办法说明自己的答案是正确的怎样说明

③题中的两个问题有什么关系

学生根据自学要求翻开教材第50页,自主学习、交流,老师巡视了解学情,对学生进行指导。

(3)组织学生汇报自学情况,展示答案。

自学要求①:

预设生:求“鹅的只数是鸭的几分之几”就是求7只是10只的几分之几,用除法计算,列式为:7÷10,根据分数与除法的关系可知结果是。求鸡的只数是鸭的多少倍,也用除法计算:20÷10=2。

自学要求②:

预设生:可以通过画图分析,证明自己的答案是正确的。

(根据学生回答,展示学生画的图或用ppt出示教材第50页的图)

自学要求③:

预设生:第1问是求一个数是另一个数的几分之几;第2问是求一个数是另一个数的几倍。这两个问题都用除法计算。

2、老师引导学生小结:求一个数是另一个数的几分之几,或几倍,都用除法计算。两个数相除,如果商是整数,那么用几倍来表示;如果商不是整数,那么用几分之几来表示。(老师板书)

3、师:根据题意,你们还能提出其他的数学问题并解答吗

(1)学生在小组里讨论,提出问题并解答。

(2)各小组展示提出的问题和解答的过程。

预设生1:我们提出的问题是:鹅的只数是鸡的几分之几解答是:7÷20=。

生2:我们提出的问题是:鸭的只数是鸡的几分之几解答是:10÷20=。

……

4、巩固练习。

五、(1)班有男生23人,女生22人。

(1)女生人数是男生人数的几分之几

(2)女生人数是全班人数的几分之几

(3)男生人数是全班人数的几分之几

学生独立解答,指名回答,集体订正。

分数除法三教案篇5

教学目标:

1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

2、能力目标:培养学生动手动脑能力,以及判断、推理能力。

3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

教学重点:

能求一个数的倒数。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

长方形纸片。

教学过程:

一、创设情景,教学分数除法的意义

1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

(1)每人吃1/2块饼,4个人共吃多少块饼?

(2)把2块饼平均分给4个人,每人吃了多少块饼?

(3)有2块饼,分给每人1/2块,可分给几个人?

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

师:讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

二、探究分数除法的计算方法

(1) 引导参与,探究新知

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/7。

师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

师:对这种做法大家有什么疑问吗?

生:这儿是除法怎么变成了乘法?

师:老师也有这个疑问,你能讲讲吗?

师:谁能结合图来讲一讲呢?

师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

(2)质疑问难,理解新知

①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

③通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

能再讲讲这样做的道理吗?

师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

展示学生的分法

师(指着涂色部分):你所表示的这一部分是4/7的多少?

通过直观图理解4/7的'1/3是4/21

(3)比较归纳,发现规律。

①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

小组活动,说算法。

④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

出示:分数除以整数,等于分数乘这个整数的倒数。

还有需要注意的地方吗?

生:有,除数不能为0。

师:谁能把分数除以整数的计算法则用自己的话来说一说?

完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

⑥那象这样的分数除以整数的题目在计算时要注意些什么?

生:要约分!结果最简。除号要变成乘号!

三、巩固练习

学生独立完成

四、课堂小结

1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

板书设计:

分数除以整数

分数除法三教案篇6

(1)计算1/5÷(2/3+1/5)×15

让个别学生说出运算顺序并计算题目的得数。

教师巡回指点,搜集存在问题。

教师黑板出示问题,学生上台改正,并说明理由。

(2)小组间讨论带有中括号的计算题,并正确计算。然后全班校对。

三、当堂测评

练习九第1、2、3题:

注:第2题求楼的楼板到地面的高度,但要注意引导学生意识6

楼楼板到地面的高度实际上只有5层楼的高度。

学生独立完成教师点评,解决疑难。

学生相互得分,评选优胜小组。

四、课堂小结

这节课有什么收获?说一说。

还有什么不懂的?提出来小组内解决。

设计意图

1、在课初始,我便从复习整数及小数的运算顺序入手,

重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发

现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练

习加强计算的训练。

2、当堂测评题将学生置于提高之处,联系实际生活解决问

题,让学生体会到数学知识的广泛性和严谨性

教学后记

《分数除法三教案推荐6篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭