考研数学学习心得6篇
心得体会作为一种感受性的材料,我们在写的时候必须融入自己的真情实感,你会写吗,当在某些事情上我们有很深的体会时,可以记录在心得体会中,以下是心得范文网小编精心为您推荐的考研数学学习心得6篇,供大家参考。
考研数学学习心得篇1
考研数学冲刺考前的重点
1.几个易混概念:连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。
2.罗尔定理:设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f‘(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线ab)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f’(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线ab,与x轴平行。
3.泰勒公式展开的应用专题:我以前,以及我所有的同学,看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在我搞明白一下几点后,原来的症状就没有了。第一:什么情况下要进行泰勒展开;第二:以哪一点为中心进行展开;第三:把谁展开;第四:展开到几阶?
4.应用多次中值定理的专题:大部分的考研题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,我的敏感性是靠自己多练习综合题培养出来的。我会经常会去复习,那样我对中值定理的题目早已没有那种刚学高数时的害怕之极。要想对微分中值定理这块的题目有条理的掌握,看我这个总结定会事半功倍的。
5.对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:这几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。
考研数学学习心得篇2
考研数学强化阶段复习的意见
考研数学强化阶段,进一步加深对知识的巩固理解以及一定的综合运用能力,也可以检验同学们在基础阶段的学习效果。而到目前这个阶段,无论是有复习基础还是刚开始着手准备的同学,建议大家:围绕考研命题形式,结合历年真题,展开一轮重难点题型攻坚战。通过这样的备考,有复习基础的同学,可以把前面的基础知识更有逻辑的凝练起来,对于准备不久的同学,通过重点题型,直击考点,更有目的性、针对性的去补习基础知识。
如何利用好数学重难点精讲课程,结合对应章节的历年真题,快速有效的打好这一重难点题型攻坚战,建议如下:
对考数学所有科目的知识点有一个清晰的把握,能分清重点难点,做到举重若轻;对于任何一道考研真题,能够辨别其考点题型,能有一个宏观标准的解题思路,做到胸有成竹;对自己的考研复习情况,能够找到相对薄弱的知识环节,重点突破,做到知己知彼。
清晰的学习规划对备战考研数学是很有效的,熟练掌握重难点题型的解题思路,从而形成标准的思路,进行系统性总结,才能克敌制胜,拿下20__考研数学。
考研数学解题速度和准确度如何提升
一、大量做题并不是关键
在考研复习期间,每个人都会做大量的数学题,但题目的数量并不是决定胜负的关键,关键在于做题的质量。所谓“质量”,是指你从一道题中学到了多少知识和解题方法,发现了多少自身存在的问题,体会到了多少命题的思路和考点。提醒考生,考研数学复习必须做题,但是不能把做题和基础知识的复习对立起来。有人认为数学基本题太简单,不愿意做,都去做更多更难的题目。但是,如果对理论知识领会不深,基本概念都没搞清楚,恐怕基本题也做不好,又怎么谈得上做更多更难的题目呢?缺乏基本功,盲目追求题目的深度、难度和做题数量,结果只能是深的不会做,浅的也难免错误百出。
二、解题思路“对症下药”
解题的过程也是加深对数学定理、公式和基本概念的理解和认识的过程。如果在这个过程中出现很多错误或没有解题思路,也就说明你对教材的理解和认识上有很多欠缺、片面甚至错误的地方,或是在运用知识的能力方面还很不够。这时就要抓住他,刨根问底,找出原因:是对定理理解错了,还是没有看清题意;是应用公式的能力不强,还是自己粗枝大叶,没有仔细分析等等。找到原因,有针对性地加以改正,就能吃一堑长一智,不必埋怨自己“倒霉”,只要有针对性地加以改正即可。做题最重要的是讲求质量,所以我们一定要精选精解。考研数学复习必须注意考点和题型,二者相辅相成,互相促进提高。如果学生做了某道题目后,便能处理同类的题目,能够举一反三,则这道题目就代表了一种题型,其解题方法就有一定的代表性,应该精练。当然,能否举一反三与学生的基础有关,但学生做一道题后,能否得到很多收获和提高,却是题目的代表性和典型性问题。
考研数学学习心得篇3
考研数学复习失分的原因
▶填空题失分点
(1)考查点:填空题比较多的是考查基本运算和基本概念,或者说填空题比较多的是计算。
(2)失分原因:运算的准确率比较差,这种填空题出的计算题题本身不难,同学们出错的原因主要是不够细心。
(3)对策:这就要求同学们复习的时候些基本的运算题不能只看不算。同学们平时对一些基本的运算题也要认真解答,要在每一种类型的计算题里面拿出一定量进行练习。
▶选择题失分点
(1)考查点:
选择题一共有八道题,这部分丢分的原因跟填空题出错原因有差异,选择题考的重点跟填空题不一样,填空题主要考基本运算概念,而选择题很少考计算题,它主要考察基本的概念和理论,主要是容易混淆的概念和理论。
(2)失分原因:
首先,有些题目确实具有一定的难度。其次,有些同学在复习过程中将重点放在了计算题上,而忽视了基础知识,导致基础知识不扎实。最后,缺乏一定的方法和技巧。由于对这种方法不了解,用常规的方法做,使简单的题变成了复杂的题。
(3)对策:
第一,基本理论和基本概念是薄弱环节的同学,就必须在这下功夫,复习一个定理一个性质的时候,即要注意它的内涵又要注意相应的外延。平时在复习的时候要注意基本的概念和理论。
第二,客观题有一些方法和技巧,通常做客观题用直接法,这是用得比较多的,但是也有一些选择题用排除法更为简单,考研的卷子里边有很多题用排除法一眼就可以看出结果,所以要注意这些技巧。
▶计算题失分点
(1)考查点:
计算题在整份试卷中占绝大部分,还有一部分是证明题,计算题就是要解决计算的准确率的问题。
(2)失分原因:
运算的准确率比较差。
(3)对策:
首先,多做练习是关键。基本的运算必须要练熟,数学跟复习政治英语不一样,数学不是完全靠背,要理解以后通过一定的练习掌握方法,并且一定自己要实践。其次,还有一类题就是证明题,如果出了证明题一般来说这部分就是难点。证明题里面有几个难点的地方是经常考察的地方,同学们复习的时候要注意知识难点的规律和使用方法。
建议大家从复习初期就开始为自己准备两个笔记本,一本用于专门整理自己在复习当中遇到过的不懂的知识点,并且将一些容易出错、容易发生混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,这样,一定会留下非常深刻的印象,避免遗忘出错。
另一本用来整理错题,同学们在复习全程中会遇到许多许多不同类型的题目,对自己曾经不会做的、做错了的题目不要看过标准答案后就轻易放过,应当及时地把它们整理一下,在正确解答过程的后面简单标注一下自己出错的原因、不会做的症结,以后再回头看的时候一定会起到很大的帮助,这也是循序渐进稳步提高解题能力的关键环节。
考研数学学习心得篇4
考研数学冲刺模考的注意要点
第一,模拟考场,卡点做题。
现场越是逼真,到了真正的考场时就越不容易紧张,答题也就越顺利。考研数学考试是安排在上午8:30-11:30,并且是在周日。那么,考生可以从现在开始,就把模拟训练定在上午这段时间里,时间从上午8:30到11:15,每周最好都能在周日都能定时模拟一次。以让自己的思维和身体状态熟悉这个周期状态,将考研的应试状态调整到好的状态。在规定时间内进行整套题的训练,可以使同学们感觉到考试的气氛,以此种方法训练可以找找考试的感觉。往年有很多同学反映这种严格的训练一开始并不适应,第一次做完整套题,三个小时下来,走路都有一种轻飘飘的感觉。这确实是个体力活,但锻炼多了,做3个小时也就成为一种习惯了。当同学们逐渐把握住做题节奏后就能孰能生巧,在考试中心中有数地自行调整做题节奏而不会有漏做题没做完的情况出现了。要知道真刀真枪的训练,与平时的单项题型训练有很大出入,因此只有在此阶段培养良好的习惯和时间意识,考试的时候才能做到心中有数,不至于遇到问题会惊慌失措。
第二,答题的细节问题。
每年都有考生因为少了答题步骤而丢分,这样的失分很可惜。大家需要注意,每一道题的关键步骤都是有分数的,这点和只看重答案的选择填空题恰恰相反。所以考生在模拟训练师,一定要尽量严格地把答题步骤写全,而不能只是心里明白就好。一般而言,在难度上,客观题也就是选择填空题会简单些,那么考生还是应该先做简单的,这样既能拿到应该得到的有效分数,也可以在做题难度上有个过渡,使考试状态渐入佳境。做解答题时,应当先做常见的题目,从熟题到生生,这样既可以增加信心,也能够为后面的陌生题目节省下集中的时间充分思考解答。
考研数学临场答题的技巧
考场上遇到这种情况不就前功尽弃了嘛。考场上不仅是学识比拼,更是一场争分夺秒的战役,所以,如果你现在还处于看到题目十多分钟都想不到解题思路的状态,快看看下面的建议吧。
考场上碰到一时想不出来的题目是正常的,建议先放一放,把能搞定的题目做完,再回过头来琢磨这道题。这样做的好处是:万一这道题做不出来,因为已经搞定大部分基础题,所以仍能得到一个可接受的分数;做出来,当然是锦上添花了。另外,搞定大部分基础题后,考生心理会"有底",而在放松的状态下是有利于做出较难的题目的。
有的同学做不出某道题,不愿意往下走,做下面的题会不舒服。小编想提醒这类同学:我们毕竟是在考试,而不是做学问。考试的目的是在限定的时间内发挥出最佳水平,取得尽可能高的分数。所以考试是个"条件最值"问题,我们无法取到"无条件最值"那种理想解。而做学问应该花时间搞定每个点。考试是务实的,而做学问则带有理想主义色彩。
其实,考试不仅仅考大家对知识的掌握情况,同时也考大家的应试能力,能做到随机应变才是以后学习和科研的重要技能。希望大家针对个人情况,好好调整心态,争取取得最理想的成绩。
考研数学学习心得篇5
一、科目考试区别:
1.线性代数
数学一、二、三均考察线性代数这门学科,而且所占比例均为22%,从历年的考试大纲来看,数一、二、三对线性代数部分的考察区别不是很大,唯一不同的是数一的大纲中多了向量空间部分的知识,不过通过研究近五年的考试真题,我们发现对数一独有知识点的考察只在09、10年的试卷中出现过,其余年份考查的均是大纲中共同要求的知识点,而且从近两年的真题来看,数一、数二、数三中线性代数部分的试题是一样的,没再出现变化的题目,那么也就是说从以往的经验来看,2015年的考研数学中数一、数二、数三线性代数部分的题目也不会有太大的差别!
2.概率论与数理统计
数学二不考察,数学一与数学三均占22%,从历年的考试大纲来看,数一比数三多了区间估计与假设检验部分的知识,但是对于数一与数三的大纲中均出现的知识在考试要求上也还是有区别的,比如数一要求了解泊松定理的结论和应用条件,但是数三就要求掌握泊松定理的结论和应用条件,广大的考研学子们都知道大纲中的"了解"与"掌握"是两个不同的概念,因此,建议广大考生在复习概率这门学科的时候一定要对照历年的考试大纲,不要做无用功!
3.高等数学
数学一、二、三均考察,而且所占比重最大,数一、三的试卷中所占比例为56%,数二所占比例78%。由于考察的内容比较多,故我们只从大的方向上对数一、二、三做简单的区别。以同济六版教材为例,数一考察的范围是最广的,基本涵盖整个教材(除课本上标有_的内容);数二不考察向量代数与空间解析几何、三重积分、曲线积分、曲面积分以及无穷级数;数三不考察向量空间与解析几何、三重积分、曲线积分、曲面积分以及所有与物理相关的应用。
二、试卷考试内容区别
1.数学??
高等数学:同济六版高等数学中除了第七章微分方程考带_的欧拉方程,伯努利方程外,其余带_的都不考;所有"近似"的问题都不考;第四章不定积分不考积分表的使用;第九章第五节不考方程组的情形;第十二章第五节不考欧拉公式;
线性代数:数学一用的教材是同济五版线性代数1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。其中向量组的线性相关性中数一考向量空间,线性方程组跟空间解析几何结合数一也要考;
概率与数理统计:1、概率论的基本概念2、随机变量及其分布3、多维随机变量及其分布4、随机变量的数字特征5、大数定律及中心极限定理6、样本及抽样分布7、参数估计8、假设检验
2.数学二
高等数学:同济六版高等数学中除了第七章微分方程考带_的伯努利方程外,其余带_的都不考;所有"近似"的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。
线性代数:数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。
概率与数理统计:不考。
3.数学三
高等数学:同济六版高等数学中所有带_的都不考;所有"近似"的问题都不考;第三章微分中值定理与导数的应用不考曲率;第四章不定积分不考积分表的使用;不考第六章定积分在物理学上的应用以及曲线的弧长。第七章微分方程不考可降阶的高阶微分方程,另外补充差分方程。不考第八章空间解析几何与向量代数。第九章第五节不考方程组的情形,第十章二重积分为止,第十二章的级数中不考傅里叶级数;
线性代数:数学一用的参考教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。数三不考向量组的线性相关性中的向量空间,线性方程组跟空间解析几何结合的问题;
概率与数理统计的内容包括:1、概率论的基本概念2、随机变量及其分布3、多维随机变量及其分布4、随机变量的数字特征5、大数定律及中心极限定理6、样本及抽样分布7、参数估计,其中数三的同学不考参数估计中的区间估计。
考研数学学习心得篇6
►吃透大纲知识点
考研大纲所列出来的知识点都可以在课本中找到。因此,同学在复习中,一定要通过大纲的指导,按照数学教材把所有的知识点做一个梳理,对数学的大体内容做一个全面了解,哪些是重点,容易考的,哪些是难点,容易出错的,都做一个记录,对以后的复习也是很有帮助的。
与此同时,对照课本和大纲把基础知识、基本理论、基本方法学透,再进一步按照课本上的顺序把一些重要知识点彻底弄清楚,从而很好的掌握了一些重要定理和性质的应用。最终拓宽了你的思路,而且对一些重要知识点也有了很深的理解。
一般来说数学考研全年复习规划一般分为三个阶段:基础阶段、强化阶段和冲刺阶段。
基础阶段复习时间是年前到今年6月底,主要是紧扣教材,把数学的基础知识、基础理论进行记忆和巩固,打好基础为后期的强化阶段复习做好准备,同时海文考研的线上平台也有各复习阶段的视频课程,方便学生重复试听观看,以提高学习效果。
第二阶段是强化阶段,主要是在第一阶段的基础上分题型进行方法总结,进一步强化解题方法和技巧。
最后就是冲刺阶段,这一阶段主要以近十年真题为主,至少做两遍,然后进行查缺补漏,从而达到更好的效果,以饱满的热情迎接考研的到来。
►提高计算准确率
数学最看重的就是考生的综合能力,而检验综合能力最好的方式就是看做题的效果,想要提高自己做题的能力,平时的大量练习是不可或缺的,所以在梳理知识点的同时,再结合适当的习题训练,才能提高自己的综合能力。对自己做错的题目要特别用心,通过做题来查缺补漏,训练思维。
提高解题速度、计算准确率,培养自己的逻辑思维能力和综合应用能力。尤其是计算准确率,数学真题80%都是计算题,所以计算准确率和解题速度是争取数学高分的一个重要前提,尤其是20__年数学真题重点考查了学生的计算能力,学生平时一定要重视起来。
►合理安排复习时间
在考研数学的复习中,时间的科学规划也是非常重要的。科学的安排时间,能够提高你的学习效率。特别是在正式考试的3个小时里,如果你能合理的分配时间,把自己会的都答对了,不会的也加以分析,并把分析结果写在试卷上,那么就不会因为没有答完而感到遗憾了。
考研数学线性代数考察规律分析
▶考研数学线性代数相比较高等数学和概率论而言,呈现明显不同的学科特点——概念多、定理多、符号多、运算规律多、内容纵横交错以及知识点前后紧密联系。
如果说高等数学的知识点算“条”的话,那么概率论就应该算“块”,而线性代数就是“网”!具体来看,线性代数这整张网,又是由行列式、矩阵、向量、线性方程组、特征值与特征向量以及二次型这6张小网相互交叉联结而成。而其中向量和线性方程组这两张网又在其中起着承前启后、上下衔接的关键作用。
通过上面的分析,大家是不是发现——向量和线性方程组是线性代数的重难点内容,也是考研的重点和难点之一?这一点也可以从历年真题的出题规律上得到验证。
关于第三章向量,无论是大题还是小题都特别容易出考题,06年以来每年都有一道考题,不是考察向量组的线性表示就是向量组的线性相关性的判断,10年还考了一道向量组秩的问题。
关于第四章线性方程组,06年以来只有11年没有出大题,其他几年的考题均是含参方程的求解或者是解的判定问题。
考研数学线性代数暑期强化复习阶段重点应放在充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法上,并及时进行总结,抓联系,使所学知识能融会贯通,举一反三。
▶向量—理解相关无关概念,灵活进行判定
向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢?首先在于对定义、性质和定理的理解,然后就是分析判定的关键在于:看是否存在一组不全为零的实数。
这部分题型有如下几种:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题(数一)。
要判断(证明)向量组的线性相关性(无关性),首先会考虑用定义法来做,其次会用向量组的线性相关性(无关性)的一些重要性质和定理结合反证法来做。同时会考虑用向量组的线性相关性(无关性)与齐次线性方程组有非零解(只有零解)之间的联系和用矩阵的秩与向量组的秩之间的联系来做。
▶线性方程组——解的结构和(不)含参量线性方程组的求解
要解决线性方程组解的结构和求法的问题,首先应考虑线性方程组的基础解系,然后再利用基础解系的线性无关性、与矩阵的秩之间的联系等一些重要性质来解决线性方程组解的结构和含参量的线性方程组解的讨论问题,同时用线性方程组解结构的几个重要性质求解(不)含参量线性方程组的解。